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Glossary
Coalescence The occurrence, looking backward in time, of
common ancestors of two or more alleles.
Effective population size A standardized measure of
population size based on the rate of change of genetic
variation as a result of reproduction but not selection.
Gamete Haploid germ cell, for example, sperm or egg.
Gene conversion A recombinational process during
meiosis in which a tract of sequence is replaced by
corresponding sequence from a different chromatid.
Haplotype Any haploid set of multi-locus genetic
variations; more specifically, here, any particular segment of
DNA sequence in a genome.
cyclopedia of Evolutionary Biology, Volume 1 doi:10.1016/B978-0-12-800049-6
Markov process A statistical model of successive changes
in the state of a system in which transition rates or
probabilities depend only on the current state.
Monecious Having a single mating type; hermaphroditic.
Path coefficients Weights of factors in linear statistical
models, used to assess causation.
Phenotype The physical characteristics of an individual
organism.
Poisson process A random process that counts numbers
of events, usually as they occur in time, in which the times
between events are exponentially distributed.
Identity by descent (IBD) is a property of genetic material in
related individuals. Specifically, two alleles – i.e., two pieces of
DNA from the same genetic locus, and therefore segregating at
meiosis in a diploid organism – are identical by descent if one
of them is descended from the other or if both are descended
from a third allele which existed at some time in the past.
Descent, here, means DNA replication and the transmission of
genetic material from parents to offspring. The voluminous
literature on IBD diverges as to whether mutations are allowed
in descent between IBD alleles, though it is probably more
commonly allowed than not. In addition, although it usually
denotes pairwise identity, IBD can be extended to more than
two alleles. For example, the common ancestral, third allele
mentioned above is identical by descent with both of its des-
cendant alleles.

IBD describes an important type of sameness which arises
in biological systems. Cotterman (1940) took pains to define
IBD clearly along with two other kinds of genetic identity:
allelic identity, meaning from the same locus, as above, and
functional identity, meaning alleles that are interchangeable
without consequence for function or phenotype. Crow (1954)
coined the term identical by descent (Cotterman had used
‘derivative’) and contrasted it with a specific kind of functional
identity, namely identity in state, which means having the
same DNA sequence. When mutation is understood to pre-
clude IBD, then IBD may be viewed as a special case of identity
in state. Similarly, it should be noted that ‘alleles’ and ‘allelic’
are used confusingly in the literature, to refer either to se-
quences from the same locus only, as here, or to functionally
different sequences at a locus.

The concept of IBD is general, but it is specifically used to
indicate close genetic relationship, in excess of background
levels in a population. Because any two individuals, even from
different species, may be said to be related if a sufficiently long
time frame is considered, detailed definitions of IBD depend
on what is chosen to measure close relationship. Notions of
IBD have been developed for (1) individuals related by a
known family structure or pedigree; (2) alleles descended from
a common ancestral allele within a specified time and/or
without any mutations between them; and (3) genomic tracts
of strong genetic similarity demarcated by recombination
events. Here, these are referred to, respectively, as pedigree
definitions of IBD, coalescent definitions of IBD, and ances-
tral-segment definitions of IBD.

The ultimate utility of any population-genetic concept, in-
cluding IBD, is in the interpretation of genetic variation.
Theoretical treatments of IBD have guided analyses of genetic
and genomic data, and provided avenues for inference by
making connections between patterns of variation and key
population-genetic parameters or sources of shared common
ancestry.
Pedigree Identity by Descent

Studies of what later became known as IBD began early in
population genetics, with efforts to allow some non-
independence of alleles in the context of the Hardy–Weinberg
Law (Hardy, 1908; Weinberg, 1908). The Hardy–Weinberg
Law by itself leaves little room for relatedness. In it each in-
dividual receives two alleles independently at random from an
essentially infinite population. Alleles are either identical (in
state) or they are different. Only if a particular relationship or
set of relationships is specified and embedded within the
population does it become possible to consider IBD. We may
think, for example, of a single parent and its offspring, which
share exactly one pair of alleles that are identical by descent,
while the other two alleles possessed by these two individuals
would represent independent random samples from the
population.

Early notions of IBD trace back to Wright’s work on in-
breeding coefficients, which may be interpreted in terms of
IBD. Wright applied his general method of path coefficients for
decomposing correlations to compute inbreeding coefficients
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given a pedigree (Wright, 1921a,b, 1922). Specifically, for a
pair of individuals (a possible mating pair) who are connected
to common ancestors through K different paths, or ‘loops’
(Cotterman, 1940) in the pedigree, the inbreeding coefficient
of an offspring of the pair is

fo ¼ ∑
K

i ¼ 1

1
2

� �niþn′iþ1

½1�

in which ni and n′i are the numbers of generations on path i
from each individual back to a common ancestor. Equation
[1] neglects the possibility that common ancestors might
themselves be inbred, but this is easily remedied if fa is known
for each ancestor (Wright, 1922).

As an illustration, it is well known that Charles Darwin
married his first cousin, Emma Wedgewood. Together they had
eight children, plus an additional two who did not survive
infancy. The relevant family tree, genealogy, or pedigree, is
depicted in Figure 1. Two paths must be considered in com-
puting fo: one in which the two alleles both came from Josiah
Wedgewood and one in which they came from Sarah Wed-
gewood. For each path connecting Charles and Emma Darwin
to their grandparents, ni ¼ n′i ¼ 2. Applying [1] gives

fo ¼ 2
1
2

� �2þ2þ1

¼ 1
16

¼ 0:0625 ½2�

as the inbreeding coefficient of any child of Charles and Emma
Darwin.

Although Wright (1921a,b) derived [1] by considering the
decomposition of the correlation of uniting gametes, it can
also be interpreted in terms of IBD. Specifically, 1/2 is the
probability that a randomly selected allele in an individual
came from a particular one of its parents. The ni þ n′i factors of
1/2 in [1] give the chance that the two alleles which unite to
form a gamete came from a given common ancestor. Another
factor of 1/2 gives the chance that the two alleles traced back to
that common ancestor are derived from the same allele. Fi-
nally the sum is taken over all paths.

For Charles and Emma Darwin’s children, there are two
paths with ni ¼ n

0
i ¼ 2. Thus, [2] gives the probability that the

two alleles at a locus in one of Charles and Emma Darwin’s
children are identical by descent. This sort of thinking under-
lies the general likelihood calculations on pedigrees that have
Josiah Wedgewood

Susannah
Wedgewood

Robert
Darwin 

Charles
Darwin

William Da
(and seven o

Figure 1 Part of the genealogy of Charles Darwin and Emma Darwin (née W
Josiah Wedgewood and Sarah Wedgewood, were also third cousins. Using a
and Emma Darwin’s children had an inbreeding coefficient of 0.0630, which
the relationships above.
been of crucial importance in human genetics (Cannings et al.,
1978).

Wright (1921b) also used the method of path coefficients,
later switching from f to F (Wright, 1931), to establish recur-
sive equations of the type discussed in Section ‘Coalescent
Identity by Descent,’ which relate inbreeding coefficients in the
current generation to those in previous generations, and to
quantify deviations from Hardy–Weinberg genotype pro-
portions. For two alleles A1 and A2 with relative frequencies p
and q¼1� p in the population, Wright described deviations
from Hardy–Weinberg proportions using

A1A1 : p2ð1� FÞ þ pF

A1A2 : 2pqð1� FÞ
A2A2 : q2ð1� FÞ þ qF

½3�

Then F is the correlation in allelic state of gametes that
unite to form a diploid zygote, and ranges from � 1 to þ 1. If
inbreeding is the source of the correlation, F ranges between 0
and 1 and may be interpreted as the probability of IBD.
Equation [3] says that an individual is formed either by sam-
pling two alleles at random (with probability 1� F) or by
sampling one allele and duplicating it to make a diploid in-
dividual (with probability F). Implicit in this interpretation,
there is a ‘separation of time scales’ between a slow popu-
lation-level process and a fast individual-level or sub-popu-
lation-level process (Rousset, 2004, p. 57).

The pedigree concept of IBD has proven useful in a
number of settings. Malécot (1948) and Kempthorne (1955)
employed it to re-derive and extend the calculations of cor-
relations in trait values between relatives which form the basis
of quantitative genetics (Fisher, 1918; Falconer and and Mac-
Kay, 1996). Another important class of applications uses ‘gene
dropping’ simulations (MacCluer et al., 1986) to account for
IBD within a pedigree in generating null distributions of
genotypes under selection; for a recent example, see Gao et al.
(2015).
Coalescent Identity by Descent

Wright (1931, p. 107) referred to F as the ‘correlation between
uniting egg and sperm’ and the ‘total proportional change of
heterozygosis.’ He also used path coefficients to study the rate
of increase of F over time under various mating schemes,
Sarah Wedgewood

Elizabeth
Allen

Josiah
W., II

Emma
Wedgewood

rwin
thers)

edgewood), who were first cousins. Their common grandparents,
more complete pedigree, Berra et al. (2010) estimate that Charles
is only a little larger than the 0.0625 computed here, based only on
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including what is now well known as the Wright–Fisher model
of random mating in a finite population (Fisher, 1930; Wright,
1931). In the simple case of a diploid, monecious organism,
over one generation

Fg ¼ 1
2N

þ 1� 1
2N

� �
Fg�1 ½4�

in which g refers to the current generation and g� 1 to
the previous generation. Equation [4] can be rearranged and
applied iteratively to obtain

1� Fg ¼ ð1� F0Þ 1� 1
2N

� �g

½5�

which, with reference to the second line of [3], shows that
heterozygosity is lost at rate 1/2N in a population of constant
size N diploid individuals. More complicated populations
behave similarly if they are large, and are described in relation
to this monecious case using the concept of effective popu-
lation size (Wright, 1931).

Malécot (1941, 1946, 1948) called F the ‘average coefficient
of consanguinity’ and clearly understood it as the probability
of IBD for two alleles in an individual. He derived recursive
equations like [4] and [5] by explicitly considering the occur-
rence of common ancestors. In the simple example given by
[4], which includes the possibility that the individual is pro-
duced by self-fertilization, 1/2N is the product of the prob-
ability that two alleles came from the same parent (1/N) and
the probability they are descended from the same allele in that
parent (1/2). When the parents are distinct, the two alleles in
an individual descend from two alleles in different individuals
in the previous generation, and here Malécot used ‘average
coefficient of kinship’ to refer to the probability of IBD. Be-
cause he introduced the notion of tracing allelic lineages back
to common ancestors, Malécot is credited with fundamental
idea behind the gene-genealogical or coalescent approach to
population genetics (Kingman, 1982; Hudson, 1983; Tajima,
1983).

Coalescent theory is reviewed in Hein et al. (2005) and
Wakeley (2008). In the context of (pairwise) IBD, it is enough
to consider the number of generations, G, back to the common
ancestor between two alleles. Under the Wright–Fisher model
above, G is geometrically distributed:
Non-IBDIBD

t

IB

IBD by time t in the past IBD 

(a) (b)

Figure 2 Two different definitions of IBD in gene-genealogical or coalescen
from a common ancestral allele by time t (or g¼2Nt generations) in the pas
from a common ancestral allele without mutation (x).
PðG¼ gÞ ¼ 1
2N

1� 1
2N

� �g�1

, g ¼ 1;2;… ½6�

If, as typical in coalescent theory, time is rescaled so that it is
measured in units of 2N generations and N is taken to be very
large, technically taking the limit N-∞ and using T¼G/2N,
then the pairwise coalescence time, T, is exponentially dis-
tributed:

fTðtÞ ¼ e�t , t40 ½7�
Thus the expected value of the time back to the most
recent common ancestor of a pair of alleles is equal to one
on the coalescent time scale, or 2N when measured in
generations.

Two notions of close relationship have been used in gene
genealogical or coalescent approaches to population genetics.
The first defines IBD relative to an arbitrarily chosen past
population, as for example: “The probability of identity by
descent is defined as the chance that two genes are descended
from the same gene in some ancestral population” (Whitlock
and Barton, 1997). Fixing a given generation g in the past and
using [6], the probability of IBD would be

PðGrgÞ ¼ ∑
g

i ¼ 1
PðG¼ gÞ ¼ 1� 1� 1

2N

� �g

½8�

and for the corresponding coalescence time t¼g/2N, the
probability of IBD would be

PðTotÞ ¼
Z t

0
fTðxÞdx¼ 1� e�t ½9�

When g and t are small, these probabilities are both small
because it is unlikely for two alleles to be descended from a
very recent common ancestor, while both probabilities ap-
proach 1 as g and t approach infinity. The occurrence of IBD
under this definition is illustrated in Figure 2(a).

Under this time-based notion of IBD, as under the pedigree
definition of IBD in Section ‘Pedigree Identity by Descent,’ IBD
has been defined alternately to require or not require
identity in state. For example, Crow (1954, p. 544) considered
that two alleles are identical by descent if both are ‘derived
from a single gene in some common ancestor’ but added
that they ‘may be unlike in state if there has been a mutation
since their common origin.’ Similarly, Cotterman (1940,
p. 171) considered that all eight combinations of his three
kinds of sameness/difference are possible. In contrast, studying
D Non-IBD

without mutation
(Past)

(Present)

Time

t models: (a) two alleles are identical by descent if they are descended
t, and (b) two alleles are identical by descent if they are descended
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Ancestral
recombination sites

Time

Figure 3 An IBD segment defined by two sites of recombination in
the ancestry of two chromosomes. Every site in the IBD segment has
the same most recent common ancestor and hence the same time
until most recent common ancestry. The focal site is denoted by the
open circles.
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F in the face of mutation with probability u per allele per
generation (so that (1� u)2 gives the probability that neither
allele underwent mutation in the previous generation) and
writing

Fg ¼ ð1� uÞ2
2N

þ ð1� uÞ2 1� 1
2N

� �
Fg�1 ½10�

Malécot (1946) implicitly assumed that IBD precludes mu-
tation. Nagylaki (1989), interpreting Malécot, states: “Two
homologous genes are identical by descent if and only if they
are derived from the same gene or one is derived from the
other (in both cases without mutation).”

The second coalescent definition of IBD follows Malécot’s
logic, and can be restated under the backward-time view of
coalescent theory (Ewens, 1990) as follows. The probability of
IBD is equal to the probability that coalescence, rather than
mutation, is the first event encountered when the ancestry of
two alleles is traced back into the past. Equations [6] and [7]
offer two ways of computing the probability that no mutation
occurs on either allele’s lineage back to their common ancestor:

∑
∞

g ¼ 1
P G¼ gð Þ 1� uð Þ2g ¼ 1� uð Þ2

2N � 1ð Þ 2� uð Þuþ 1
½11�

Z ∞

0
fTðtÞe�θtdt ¼ 1

θ þ 1
½12�

in which θ¼4Nu is the usual population mutation rate par-
ameter in coalescent theory. A graphical illustration of this
definition of IBD is given in Figure 2(b). Equation [11] is also
the solution to [10] for Fg�1¼Fg¼F. Malécot (1946) obtained
[12] as an approximation to this solution, and noted its ac-
curacy for most biologically reasonable values of N and u,
which is to say when N is large and u is small.

The coalescent definitions of IBD described in this section
apply to allelic variation at a single locus without recombin-
ation. Important extensions include considerations of sub-
divided populations (Wright, 1951; Slatkin, 1991; Rousset,
2004) and patterns of identity and difference in samples of
more than two alleles (Ewens, 1972; Thompson, 2013).
Ancestral-Segment Identity by Descent

With the advent of DNA sequencing, and now whole-genome
sequencing and genotyping, single-locus concepts of IBD have
given way to a genomic perspective which has yielded new
insights, particularly in the field of human population genetics
(Thompson, 2013). In this context, it is the joint action of
coalescence and recombination that determines close rela-
tionship, and IBD refers to segments of genomes which des-
cend from recent common ancestors.

To illustrate, consider a focal site which is identical by
descent under the pedigree definition of IBD. If there were no
recombination, every site would have the same ancestry as the
focal site and the entire chromosome would be identical by
descent. Recombination decouples the ancestries of different
sites and allows IBD to vary along the chromosome because
each recombination event chops the chromosome into ma-
ternal and paternal pieces which then may have different an-
cestries. The result is that IBD will occur in segments, as
depicted in Figure 3, such that some number of sites on either
side of the focal site will share the same ancestry and be
identical by descent.

Under this ancestral-segment view of IBD, two homologous
segments in an alignment of two chromosomes are identical by
descent if they share a most recent common ancestor, and hence
the same coalescence time, at every site. Here these are referred
to as IBD segments, but they could also be called IBD tracts or
IBD blocks. Note that this definition of IBD implies that every
pair of chromosomes is IBD everywhere, because at every site
there is a most recent common ancestor which is the same for
some number of adjacent sites. As IBD is meant to indicate close
relationship, interest is focused on recently co-inherited IBD
segments. Younger IBD segments tend to be longer due to the
limited opportunity for recombination in their ancestries. Thus,
ancestral-segment IBD is typically defined in terms of a min-
imum length cutoff for segments.

Detection of IBD segments involves finding long haplo-
types that are identical in state, although some mismatches are
allowed due to the presence of genotyping or sequencing error,
mutations that have occurred since the most recent common
ancestor defining the IBD segment, and even short gene con-
version events that effectively incorporate mutations from
other haplotypes. Some IBD detection methods use dense
genotype data (Purcell et al., 2007; Gusev et al., 2009;
Browning and Browning, 2011), allowing reliable detection of
IBD segments as short as two centiMorgans (cM). Recently,
other methods have been developed to take advantage of se-
quence data, enabling reliable detection of IBD segments as
short as 0.2 cM (Browning and Browning, 2013; Tataru et al.,
2014). Tataru et al. (2014) present comparisons of current IBD
detection methods.

Fisher (1949, Chapter 3) made the first theoretical exam-
ination describing the lengths and counts of IBD segments
(bordered by what he termed ‘junctions’) in regular mating
systems, for example, full-sib or parent-offspring mating.
Stam (1980) considered the same quantities in the
context of random-mating populations, and Chapman and
Thompson (2003) studied IBD tracts in subdivided
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populations. These studies attempt to simultaneously model
many IBD segments across the genome, which is a very dif-
ficult problem.

More recently, coalescent theory has been employed to
model IBD-segment distributions. The foundation for this work
is the coalescent with recombination, which describes the gen-
etic ancestry of recombining chromosomes as an ‘ancestral re-
combination graph’ (Griffiths and Marjoram, 1997), allowing
different ancestries at different loci. Wiuf and Hein (1999)
provided a formulation of this model that proceeded along the
chromosomes rather than backward in time, laying the
groundwork for practical applications of coalescent theory to
IBD segments. McVean and Cardin (2005) proposed a
simplified Markov process to approximate this model, im-
mensely improving its computational efficiency, with a sub-
sequent improvement by Marjoram and Wall (2006). These
latter models are referred to as sequentially Markov coalescent
(SMC) models.

Palamara et al. (2012) derived the IBD-segment length
distribution as follows. Consider a single focal site in two
aligned chromosomes, and assume that the two copies at that
site last shared a common ancestor g generations ago. If every
ancestral recombination event defines a new IBD segment,
which is equivalent to assuming the SMC model of McVean
and Cardin (2005), the length of an IBD segment can be
modeled by considering the nearest ancestral recombination
events on either side of the focal site. This SMC assumption,
that a recombination event invariably terminates an IBD seg-
ment, is reconsidered below.

There are 2g meioses separating the two chromosomes
since the most recent shared ancestor at the focal site. If re-
combination occurs without interference and the distance
between recombination sites is measured in Morgans, then in
each meiosis recombination can be modeled as a Poisson
process along the chromosome with mean equal to 1. Re-
combination across all 2g meioses is then a Poisson process
with mean 2g, and the length L of the IBD segment sur-
rounding the focal site can be described as the sum of two
independent exponential random variables with rate 2g, each
representing the distance along the chromosome in one dir-
ection away from the focal site.

Given g, the length L is gamma distributed (Palamara et al.,
2012):

fLjGðljgÞ ¼ 4g2e�2gl ½13�

However, in most contexts the age g is not an observable
quantity, so it is integrated out to give the overall IBD-segment
length distribution. Using an exponential distribution with
rate 1/2N to approximate the geometric distribution in [6],

fLðlÞ ¼
Z ∞

0
fGðgÞfLjGðl gÞdgj

¼
Z ∞

0

1
2N

e�g=2Nð2gÞ2le�2gldg ¼ 32N2l

ð1þ 4NlÞ3 ½14�

which is a power-law distribution, with infinite mean and
variance.

Equation [14] gives the distribution of L when IBD seg-
ments are sampled by selecting a position (the focal site)
uniformly at random over a long chromosome. Each IBD
segment is effectively weighted by its length. It is perhaps more
intuitive and more useful to consider the distribution of IBD
segments that arises from sampling entire segments uniformly
at random rather than weighting them by their lengths. The
difference between the two distributions is often referred to as
the inspection paradox. If the length of a uniformly sampled
IBD segment is denoted S, the density function of S can be
derived by weighting [14] by 1/l and normalizing, which gives

fSðsÞ ¼
1
s

32N2s
ð1þ4NsÞ3Z ∞

0

1
l

32N2l

ð1þ 4NlÞ3 dl
¼ 8N

ð1þ 4NsÞ3 ½15�

This is also a power-law distribution, with mean 1/4N and
infinite variance. Note that deriving [15] without first deriving
[14] would require knowing the distribution of coalescence
times at IBD-segment edges. The derivation proceeds as above
because the distribution of coalescent times at a fixed site
arises more naturally from coalescent theory.

The density [15] suggests that in a diploid population of
size N¼10 000, the fraction of all IBD segments that are
longer than 0.2 cM is B1.5� 10–4, while the fraction longer
than 2 cM is B1.5� 10–6. Viewed from the other perspective,
the density [14] indicates that the mean fraction of the genome
contained in IBD segments larger than 0.2 cM is B0.025,
while the mean fraction contained in IBD segments larger than
2 cM is 0.0025.

The shapes of these distributions change under variable
population sizes or when migration occurs between sub-
populations, allowing data on IBD to be used for demographic
inference about the recent past. Palamara et al. (2012) used
this to infer recent population size changes in the Ashekenzi
Jewish and Maasai populations, later generalizing to include
migration between two subpopulations (Palamara and Pe’er,
2013). Independently, Ralph and Coop (2013) used IBD
sharing to characterize the recent geographic and demographic
structuring of Europe.

Common to all of these studies is the assumption that
recombination events always terminate IBD segments. In fact
one-third of all recombination events do not create a new IBD
segment (see Theorem 2.4 in Griffiths and Marjoram, 1997)
because they are ‘healed’ by coalescent events in which the two
ancestral lineages separated by recombination coalesce back
together. These events were ignored in the original formu-
lation of the SMC, but were included in the subsequent SMC’
model (Marjoram and Wall, 2006). IBD-segment length dis-
tributions can be derived under the SMC’ in the manner above,
and predictions for overall IBD length distributions under the
SMC’ match simulations under the full ancestral recombin-
ation graph very well, which is not true of the SMC (Carmi
et al., 2014). The resulting equations are cumbersome and
involve special mathematical functions. Furthermore, for re-
cent IBD segments there is little opportunity for back coales-
cence, and the differences between the SMC and SMC’
predictions are negligible. However, for older, or shorter, IBD
segments (smaller than B0.5–1 cM) and for populations that
have a small recent effective population size, it is important to
base calculations on the SMC’.
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With this minor caveat, it is clear that IBD segment-based
techniques offer novel and practical ways of using genetic data
to learn about the very recent past. IBD approaches to infer-
ence depend heavily on accurate detection of IBD segments,
emphasizing the importance of recent improvements in IBD
detection (Browning and Browning, 2013; Tataru et al., 2014).
Considering these developments, along with the recent theo-
retical advances outlined above, there is promise that IBD-
segment methods will continue to reveal new insights into
recent demographic processes in ways that complement other
traditional approaches of population genetics.
See also: Effective Population Size. Genetic Drift, Models of
Random
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